If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+x=1000
We move all terms to the left:
x^2+x-(1000)=0
a = 1; b = 1; c = -1000;
Δ = b2-4ac
Δ = 12-4·1·(-1000)
Δ = 4001
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{4001}}{2*1}=\frac{-1-\sqrt{4001}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{4001}}{2*1}=\frac{-1+\sqrt{4001}}{2} $
| -12(k)=24 | | 6/7m-1/7=5/28 | | X-3=-(6x+12) | | 85-x=254 | | 281=21-y | | (2x-1)^2=26 | | 3x-8+1=x+3 | | 3(2x-3)=4x+14 | | --1/2=x3/4 | | 1.42.5=g25 | | 3/5y-1/3y=4 | | 5(2y)+2y=180 | | 8x/10=560 | | -5/6=x1/2 | | -2(x+-2)-4x=3(x+1)-9x | | x+32/5=2 | | 3x+5=5-9 | | x+0.60(15)=0.80(x+15 | | -2/7w=-6 | | 2x^2+5x+(25/8)=0 | | 12-4/5(x-15)=66 | | 3(1-6x)=14-x | | 47x+20=6(7x+2)+5x+8 | | -4=-2(2y-4) | | -14+x=-13 | | 17x+2=2(5x-1)+7x+4 | | 5x/2+40=5000 | | 11y+29=62 | | 7p-2p-18+4p=7p-26 | | 40x+11=5(7x+3)+5x-4 | | 5x-20=7x+50 | | X+0.60(15)=0.80(x+15) |